立即咨询

电话咨询

微信咨询

立即试用
商务合作

Agora新增支持Python:视频通话中也可做图像识别了

2019-09-16

近两年来,Python在众多编程语言中的热度一直稳居前五,热门程度可见一斑。Python 拥有很活跃的社区和丰富的第三方库,Web 框架、爬虫框架、数据分析框架、机器学习框架等,开发者无需重复造轮子,可以用 Python 进行 Web 编程、网络编程,开发多媒体应用,进行数据分析,或实现图像识别等应用。其中图像识别是最热门的应用场景之一,也是与实时音视频契合度最高的应用场景之一。

声网Agora 现已支持 Python 语言,我们还写了一份 Python demo,并已分享至 Github。本文将从 TensorFlow 图像识别讲起,并讲 TensorFlow 与 Agora Python SDK 结合,在实时音视频场景中实现图像识别。实现后的效果,如下图所示。

实时通话中成功识别左图中的人、椅子和显示器

TensorFlow图片物体识别

TensorFlow是Google的开源深度学习库,你可以使用这个框架以及Python编程语言,构建大量基于机器学习的应用程序。而且还有很多人把TensorFlow构建的应用程序或者其他框架,开源发布到GitHub上。所以我们今天主要基于Tensorflow学习下物体识别。

TensorFlow提供了用于检测图片或视频中所包含物体的API,详情可参考以下链接:

https://github.com/tensorflow/models/tree/master/research/object_detection

物体检测是检测图片中所出现的全部物体并且用矩形(Anchor Box)进行标注,物体的类别可以包括多种,例如人、车、动物、路标等。举个例子了解TensorFlow物体检测API的使用方法,这里使用预训练好的ssd_mobilenet_v1_coco模型(Single Shot MultiBox Detector),更多可用的物体检测模型可以参考这里:

https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md#coco-trained-models-coco-models

加载库

  1. # -*- coding:
  2. utf-8 -*-
  3. import numpy as
  4. np
  5. import
  6. tensorflow as tf
  7. import
  8. matplotlib.pyplot as plt
  9. from PIL import
  10. Image
  11. from utils
  12. import label_map_util
  13. from utils
  14. import visualization_utils as vis_util

定义一些常量

  1. PATH_TO_CKPT = 'ssd_mobilenet_v1_coco_2017_11_17/frozen_inference_graph.pb'
  1. PATH_TO_LABELS = 'ssd_mobilenet_v1_coco_2017_11_17/mscoco_label_map.pbtxt'
  1. NUM_CLASSES = 90

加载预训练好的模型

  1. detection_graph = tf.Graph
  2. with detection_graph.as_default:
  3. od_graph_def = tf.GraphDef
  4. with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
  5. od_graph_def.ParseFromString(fid.read)
  6. tf.import_graph_def(od_graph_def, name='')

加载分类标签数据

  1. label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
  1. categories = label_map_util.convert_label_map_to_categories(label_map,max_num_classes=NUM_CLASSES, use_display_name=True)
  1. category_index = label_map_util.create_category_index(categories)

一个将图片转为数组的辅助函数,以及测试图片路径

  1. def load_image_into_numpy_array(image):
  2. (im_width, im_height) = image.size
  3. return np.array(image.getdata).reshape((im_height, im_width, 3)).astype(np.uint8)
  4. TEST_IMAGE_PATHS = ['test_images/image1.jpg', 'test_images/image2.jpg']

使用模型进行物体检测

  1. with detection_graph.as_default:
  2. with tf.Session(graph=detection_graph) as sess:
  3. image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
  4. detection_boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
  5. detection_scores = detection_graph.get_tensor_by_name('detection_scores:0')
  6. detection_classes = detection_graph.get_tensor_by_name('detection_classes:0')
  7. num_detections = detection_graph.get_tensor_by_name('num_detections:0')
  8. for image_path in TEST_IMAGE_PATHS:
  9. image = Image.open(image_path)
  10. image_np = load_image_into_numpy_array(image)
  11. image_np_expanded = np.expand_dims(image_np, axis=0)
  12. (boxes, scores, classes, num) = sess.run(
  13. [detection_boxes, detection_scores, detection_classes, num_detections],
  14. feed_dict={image_tensor: image_np_expanded})
  15. vis_util.visualize_boxes_and_labels_on_image_array(image_np, np.squeeze(boxes), np.squeeze(classes).astype(np.int32), np.squeeze(scores), category_index, use_normalized_coordinates=True, line_thickness=8)
  16. plt.figure(figsize=[12, 8])
  17. plt.imshow(image_np)
  18. plt.show

检测结果如下,第一张图片检测出了两只狗狗

实时音视频场景下TensorFlow物体识别

既然Tensorflow在静态图片的物体识别已经相对成熟,那在现实场景中,大量的实时音视频互动场景中,如何来做物体识别?我们现在基于声网实时视频的SDK,阐述如何做物体识别。

首先我们了解视频其实就是由一帧一帧的图像组合而成,所以从这个层面来说,视频中的目标识别就是从每一帧图像中做目标识别,从这个层面上讲,二者没有本质区别。在理解这个前提的基础上,我们就可以相对简单地做实时音视频场景下Tensorflow物体识别。

(1)读取Agora实时音视频,截取远端视频流的图片

  1. def onRenderVideoFrame(uid, width, height, yStride,
  2. uStride, vStride, yBuffer, uBuffer, vBuffer,
  3. rotation, renderTimeMs, avsync_type):
  4. # 用 isImageDetect 字段判断前一帧图像是否已完成识别,若完成置为True,执行以下代码,执行完置为false
  5. if EventHandlerData.isImageDetect:
  6. y_array = (ctypes.c_uint8 * (width * height)).from_address(yBuffer)
  7. u_array = (ctypes.c_uint8 * ((width // 2) * (height // 2))).from_address(uBuffer)
  8. v_array = (ctypes.c_uint8 * ((width // 2) * (height // 2))).from_address(vBuffer)
  9. Y = np.frombuffer(y_array, dtype=np.uint8).reshape(height, width)
  10. U = np.frombuffer(u_array, dtype=np.uint8).reshape((height // 2, width // 2)).repeat(2, axis=0).repeat(2, axis=1)
  11. V = np.frombuffer(v_array, dtype=np.uint8).reshape((height // 2, width // 2)).repeat(2, axis=0).repeat(2, axis=1)
  12. YUV = np.dstack((Y, U, V))[:height, :width, :]
  13. # AI模型中大多数模型都是RGB格式训练,声网提供的视频回调数据源是YUV格式,我们做下格式转换
  14. RGB = cv2.cvtColor(YUV, cv2.COLOR_YUV2RGB, 3)
  15. EventHandlerData.image = Image.fromarray(RGB)
  16. EventHandlerData.isImageDetect = False

(2)Tensorflow对截取图片进行物体识别

  1. class objectDetectThread(QThread):
  2. objectSignal = pyqtSignal(str)
  3. def __init__(self):
  4. super.__init__
  5. def run(self):
  6. detection_graph = EventHandlerData.detection_graph
  7. with detection_graph.as_default:
  8. with tf.Session(graph=detection_graph) as sess:
  9. (im_width, im_height) = EventHandlerData.image.size
  10. image_np = np.array(EventHandlerData.image.getdata).reshape((im_height, im_width, 3)).astype(np.uint8)
  11. image_np_expanded = np.expand_dims(image_np, axis=0)
  12. image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
  13. boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
  14. scores = detection_graph.get_tensor_by_name('detection_scores:0')
  15. classes = detection_graph.get_tensor_by_name('detection_classes:0')
  16. num_detections = detection_graph.get_tensor_by_name('num_detections:0')
  17. (boxes, scores, classes, num_detections) = sess.run(
  18. [boxes, scores, classes, num_detections],
  19. feed_dict={image_tensor: image_np_expanded})
  20. objectText = []
  21. # 如果识别概率大于百分之四十,我们就在文本框内显示所识别物体
  22. for i, c in enumerate(classes[0]):
  23. if scores[0][i] > 0.4
  24. object = EventHandlerData.category_index[int(c)]['name']
  25. if object not in objectText:
  26. objectText.append(object)
  27. else:
  28. break
  29. self.objectSignal.emit(', '.join(objectText))
  30. EventHandlerData.detectReady = True
  31. # 本帧图片识别完,isImageDetect 字段置为True,再次开始读取并转换Agora远端实时音视频
  32. EventHandlerData.isImageDetect = True

我们已经将这个Demo 以及Agora Python SDK 上传至Github,大家可以直接下载使用。

Agora Python TensorFlow Demo:

https://github.com/AgoraIO-Community/Agora-Python-Tensorflow-Demo

Agora Python TensorFlow Demo编译指南:

  •  
  • 若是 Windows,复制.pyd and .dll文件到本项目文件夹根目录;若是IOS,复制.so文件到本文件夹根目录
  • 下载TensorFlow 模型,然后把 object_detection 文件复制.到本文件夹根目录
  • 安装 Protobuf,然后运行:protoc object_detection/protos/*.proto --python_out=.
  •  
  • 推荐使用 ssd_mobilenet_v1_coco 和 ssdlite_mobilenet_v2_coco,因为他们相对运行较快
  • 提取 frozen graph,命令行运行:python extractGraph.py --model_file='FILE_NAME_OF_YOUR_MODEL'
  • 最后,在 callBack.py 中修改 model name,在 demo.py 中修改Appid,然后运行即可

请注意,这个 Demo 仅作为演示使用,从获取到远端实时视频画面,到TensorFlow 进行识别处理,再到显示出识别效果,期间需要2至4 秒。不同网络情况、设备性能、算法模型,其识别的效率也不同。感兴趣的开发者可以尝试更换自己的算法模型,来优化识别的延时。

 

 

更多产品了解

欢迎扫码加入云巴巴企业数字化交流服务群

产品交流、问题咨询、专业测评

都在这里!

 

热门数字化产品

百度智能云客悦智能客服系统百度智能云客悦智能客服系统作为百度智能对话平台的一次重大升级,基于大模型完成企业级对话平台重构,提供高效搭建任务对话、知识问答、人设闲聊等AI原生Agent的能力,帮助企业高效开启大模型智能对话全新体验,为智能对话系统的发展树立了新的里程碑。
IP数据云全球IP地址定位平台IP数据云全球IP地址定位平台利用网络拓扑结构算法和基于多层神经网络的IP地址定位算法,完成IP地理位置定位。采用多级应用场景划分算法,实现精细化、层次化的IP应用场景划分。基于大数据算法,对黑产IP的全生命周期采取动态打分机制,实时判定风险等级。
跨境云手机跨境云手机,基于自主知识产权的磐玉蜂巢服务器及创新的容器化技术, 跨境云产品以“ 高安全性、高能效比、高性价比” 为价值理念, 持续构建丰富的ARM云产品矩阵, 帮助客户以更低成本获得安全稳定、绿色节能、高效敏捷的ARM云服务和云算力,为跨境直播带货,海外市场营销和进出口贸易,跨境电商出海创造更多可能。
埃文科技IP风险画像埃文科技IP风险画像基于多维度数据信息、持续性IP风险验证机制和多级IP风险判定算法,实时关联IP的位置信息、应用场景、端口服务和设备风险信息等进行IP风险精准判定,并实行IP风险赋分、风险分级机制,简化业务应用门槛。IP风险画像产品可覆盖识别7种类型的风险IP,分别是VPN、代理、秒拨、数据中心、Tor节点、端口扫描、暴力破解。
艺赛旗桌面行为分析CDA艺赛旗桌面行为分析CDA,通过可视化录屏、用户行为数据化和基于大数据的智能行为分析,真实全面的记录“人”的行为,帮助企业防范信息泄露,避免商业欺诈,提高客户服务质量和员工工作效率。便捷、灵活的风险监管策略配置,更准确的定位员工的桌面操作行为和风险行为。
为你推荐
2025腾讯产业合作伙伴大会|云巴巴荣获双项大奖,载誉而归

1月16日,2025腾讯产业合作伙伴大会在三亚召开。云巴巴,荣膺“2024腾讯云卓越合作伙伴奖—星云奖”和“2024腾讯云AI产品突出贡献奖”双项大奖

2025-01-17
律师/保险/医美都在用的在线签约神器!腾讯会议如何打破行业壁垒?

腾讯会议与腾讯电子签的深度结合,正以“边开会边签约”的创新模式,来重塑各大行业的服务流程,让企业服务从“线下跑腿”迈向“线上闭环”。

2025-05-13
外贸人注意!看外贸企业如何用CRM系统化解合规风险

南北外贸软件的CRM系统凭借其客户关系管理、数据整合与智能分析能力,成为外贸企业突破困局的有利渠道。

2025-05-13
个人微信养号期如何科学运营?日常操作规范与权重提升策略深度解析

个人微信养号期是构建账号生命周期价值的起点,需通过“标准化操作+动态优化”实现权重提升。企业/个人应建立操作日志,记录关键行为数据,为后续运营提供决策依据。

2025-05-13
企业微信添加好友总受限?掌握这些策略与技巧,快速提升客户转化率!

通过建立「渠道组合-风控合规-转化优化-长效运营」的四维体系,企业可在平台规则框架内实现可持续拓客。

2025-05-13
查看更多